Изменение № 1 ГОСТ Р 51635—2000 Мониторы радиационные ядерных материалов. Общие технические условия

Утверждено и введено в действие Приказом Федерального агентства по техническому регулированию и метрологии от 29.05.2007 № 110-ст

Дата введения 2007—10—01

Раздел 2. Заменить ссылки и наименования:

ГОСТ 2.601—95 на ГОСТ 2.601—2006;

ГОСТ 12.2.006—87 на «ГОСТ Р МЭК 60065—2002 Аудио-, видео- и аналогичная электронная аппаратура. Требования безопасности»;

ГОСТ 15.001—88 на «ГОСТ Р 15.201—2000 Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство»;

ГОСТ 22782.0—81 на «ГОСТ Р 51330.0—99 (МЭК 60079—0—98) Электрооборудование взрывозащищенное. Часть 0. Общие требования»:

ГОСТ 22782.5—78 на «ГОСТ Р 51330.10—99 (МЭК 60079—11—99) Электрооборудование взрывозащищенное. Часть 11. Искробезопасная электрическая цепь i»;

ГОСТ 22782.6—81 на «ГОСТ Р 51330.1—99 (МЭК 60079—1—98) Электрооборудование взрывозащищенное. Часть 1. Взрывозащита вида «взрывонепроницаемая оболочка»;

ГОСТ 24385—80 на «ГОСТ 30668—2000 Изделия электронной техники. Маркировка»;

ГОСТ 24812—81 и ГОСТ 24813—81 на «ГОСТ 30630.0.0—99 Методы испытаний на стойкость к внешним воздействующим факторам машин, приборов и других технических изделий. Общие требования»;

исключить ссылки: ГОСТ 8.315—97, ГОСТ 12.2.021—76, ГОСТ 15484—81, ГОСТ 23649—79, ГОСТ 25926—90, ГОСТ 27212—87;

«ГОСТ 2.610—2006 Единая система конструкторской документации. Правила выполнения эксплуатационных документов»;

(Продолжение см. с. 18)

дополнить ссыдками:

«ГОСТ Р 52118—2003 Стандартные образцы ядерных материалов для радиационных мониторов. Общие технические требования и методы испытаний».

Пункт 3.1. Десятый, одиннадцатый абзацы. Исключить ссылку: (ГОСТ 15484).

Пункт 4.3. Заменить значение и слова: 0,25 мкЗв/ч на 0,22 мкЗв/ч, «приложении А» на ГОСТ Р 52118;

таблицы 2, 5, 6 изложить в новой редакции:

Таблица2 — Категории транспортных мониторов гамма-излучения

Категория транспортного монитора	Значение порога обнаружения, г	
	СО из плугония	СО из урана
IΤý	0,1	3.
ΗТγ	0,3	10
ШТγ	1,0	64
Ιντγ	3,0	250
VTγ	10,0	1000
VITγ	30,0	4000

Т а б л и ц а 5 — Категории носимых мониторов нейтронного излучения при расположении СО на расстоянии (20,0 \pm 0,5)· 10^{-2} м от чувствительной поверхности

Категория носимого монитора	Значение порога обнаружения, г СО из плутония*	
IHn ₂₀ .	0,3	
IIHn ₂₀	1,0	
IIIHn ₂₀	3,0	
IVHn ₂₀	10,0	
VHn_{20}	30,0	

Для мониторов, имеющих и гамма-канал, плутоний должен находиться в свинцовой защите толщиной от 0,03 до 0,05 м.

(Продолжение см. с. 19)

Т а б л и ц а 6 — Категории пешеходных и транспортных мониторов нейтронного излучения, носимых мониторов нейтронного излучения при расположении СО на расстоянии (100 ± 5) 10^{-2} м от чувствительной поверхности

Категория монитора		Значение порога обнаружения, г	
пеше ходного	транспортного	носимого	СО из плутония*
IΠn	lTn	IHn ₁₀₀	30
IIIIn	IITn	$IIHn_{i00}$	90
ШПп	HITn	$IIIHn_{100}$	270
IVΠn	IVTn	IVHn ₁₀₀	540

Для мониторов, имеющих и гамма-канал, плутоний должен находиться в свинцовой защите толщиной от 0,03 до 0,05 м.

Раздел 4 дополнить пунктом — 4.4:

«4.4 Вместо СО из плутония массой от 10 до 540 г и урана массой от 64 до 4000 г допускается использовать альтернативные источники из ЯМ и РВ (235 U, 239 Pu, 133 Ba, 252 Cf, 244 Cm), у которых поток гамма-квантов (нейтронов) в телесный угол 4π стерадиан эквивалентен по отклику потоку гамма-квантов (нейтронов) соответствующего CO».

Пункт 5.1.2.2 изложить в новой редакции:

«5.1.2.2 Средняя наработка до отказа — не менее 4000 ч».

Пункт 5.4.2. Заменить ссылку: ГОСТ 24385 на ГОСТ 30668.

Пункт 6.5. Второй абзац. Заменить ссылку: ГОСТ 22782.0 на ГОСТ Р 51330.0

Пункт 7.2. Заменить ссылку: ГОСТ 15.001 на ГОСТ Р 15.201.

Пункт 8.1.4. Заменить ссылки: ГОСТ 24812* и ГОСТ 24813* на ГОСТ 30630.0.0;

исключить сноску*.

Пункт 8.24.3. Второй абзац. Заменить ссылку: ГОСТ 12.2.006 на ГОСТ Р МЭК 60065.

Пункт 8.24.4. Исключить ссылку: ГОСТ 12.2.021;

заменить ссылки: ГОСТ 22782.0 на ГОСТ Р 51330.0, ГОСТ 22782.5 на ГОСТ Р 51330.10, ГОСТ 22782.6 на ГОСТ Р 51330.1.

Пункт 10.1 после слов «по ГОСТ 2.601» дополнить словами: «и ГОСТ 2.610»:

(Продолжение см. с. 20)

Пункт 10.3. Первый абзац. Заменить слова: «приложении А» и «приложением А» на ГОСТ Р 52118.

Приложение А исключить.

Приложение Б. Таблицы Б.1, Б.2. Значение массы СО из плутония 20,00 г и соответствующие значения исключить;

таблицу Б.3 изложить в новой редакции:

Т а б л и п а Б.3 — Поток нейтронов альтернативных источников нейтронного излучения

Масса СО из плутония, г	Поток нейтронов альтернативных источников из 252 Cf, 244 Cm, c^{-1}
0,3	0,18·102
1,0	0,60·10 ²
3,0	1,80·102
10,0	6,00 102
30,0	1,80.103
90,0	5,40·103
270,0	1,60 104
540,0	3,20.104

П р и м е ч а н и е — Альтернативные источники из 252 Cf, 244 Cm выбраны при условии, если поток нейтронов, выходящий из 1 г 240 Pu, равен 1000 с $^{-1} \pm 20$ %. Содержание 240 Pu в Pu — 6 %.

Приложение Г. Позиции [2], [3], [4] изложить в новой редакции:

- «[2] Правила технической эксплуатации электроустановок потребителей, утвержденные Минэнерго России 13.01.03 № 6
- [3] ПОТ Р М—016—2001, РД 153—34.0—03.150—00 Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок, утвержденные приказом Министерства энергетики Российской Федерации от 27 декабря 2000 г. № 163, постановлением Министерства труда и социального развития Российской Федерации от 5 января 2001 г. № 3
- [4] СП 2,6.1.799—99 Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99), утвержденные Главным государственным санитарным врачом Российской Федерации 27 декабря 1999 г.».

(ИУС № 8 2007 г.)

