
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СПЕЦИАЛЬНЫЕ МЕТОДЫ ИСПЫТАНИЙ ПОЛИВИНИЛХЛОРИДНЫХ КОМПАУНДОВ ИЗОЛЯЦИИ И ОБОЛОЧЕК ЭЛЕКТРИЧЕСКИХ КАБЕЛЕЙ

ОПРЕДЕЛЕНИЕ ПОТЕРИ МАССЫ. ИСПЫТАНИЕ НА ТЕРМИЧЕСКУЮ СТАБИЛЬНОСТЬ

Издание официальное

ГОССТАНДАРТ РОССИЙ Москва

ГОСУДАРСТВЕННЫЯ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СПЕЦИАЛЬНЫЕ МЕТОДЫ ИСПЫТАНИЯ ПОЛИВИНИЛХЛОРИДНЫХ КОМПАУНДОВ ИЗОЛЯЦИИ И ОБОЛОЧЕК ЭЛЕКТРИЧЕСКИХ КАБЕЛЕЯ

Определение потери массы. Испытание на термическую стабильность ГОСТ Р МЭК 811-3-2-94

Methods specific to PVC compounds of insulating and sheathing materials of electric cables.

Loss of mass test. Thermal stability test

OKCTY 3509

Дата введения 1995-01-01

1. ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

Настоящий стандарт распространяется на методы ислытаний полимерных материалов изоляции и оболочек электрических кабелей, проводов и шиуров для распределения энергии и связи, включая судовые кабели, и устанавливает методы определения потери массы и испытания на термическую стабильность, применяемые для поливинилхлоридных компаундов.

Требования настоящего стандарта являются обязательными.

2. УСЛОВИЯ ИСПЫТАНИЯ

Условия испытаний, не установленные настоящим стандартом (температура, продолжительность испытаний и т. д.), должны быть указаны в нормативно-технической документации (НТД) на кабельные изделия конкретных видов.

Любые требования к испытаниям; установленные в настоящем стандарте, могут быть изменены в НТД на кабельные изделия конкретных видов, в зависимости от их особенностей.

Издание официальное

С Издательство стандартов, 1994

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

3. ОБЛАСТЬ ПРИМЕНЕНИЯ

Условия кондиционирования и параметры испытаний установлены для наиболее распространенных видов композиций для изоляции и оболочки кабелей, проводов и шнуров.

4. ТИПОВЫЕ И ДРУГИЕ ИСПЫТАНИЯ

Методы испытания, установленные настоящим стандартом, предназначены главным образом для типовых испытаний. В случае необходимости изменения условий испытаний при более частых испытаниях (например, приемосдаточных) эти изменения нормируют.

5. ПРЕДВАРИТЕЛЬНОЕ КОНДИЦИОНИРОВАНИЕ

Все испытания должны проводиться не ранее чем через 16 ч после экструзии изоляции или оболочки.

6. ТЕМПЕРАТУРА ИСПЫТАНИЙ

Если нет особых указаний, испытания должны проводиться при температуре окружающей среды.

7. МЕДИАННОЕ ЗНАЧЕНИЕ

Полученные результаты располагают в ряд в порядке возрастания или убывания числовых значений и определяют медианное значение, которое находится в середине ряда, если число полученных результатов нечетное, или является усредненным значением из двух, которые находятся в середине ряда, если число результатов четное.

8. ОПРЕДЕЛЕНИЕ ПОТЕРИ МАССЫ ДЛЯ ИЗОЛЯЦИИ И ОБОЛОЧЕК

- 8.1. Определение потери массы для изоляции
- 8.1.1. Испытательное оборудование
- а) Термостат с естественной или принудительной циркуляцией воздуха. Воздух в термостате должен проходить над поверхностью образцов, выходить в верхней части термостата и полностью обновляться не менее 8 и не более 20 раз в час при установленной температуре. В спорных случаях используют термостат с естественной циркуляцией воздуха.

Применение вентилятора внутри термостата не допускается.

б) Аналитические весы с чувствительностью до 0.1 мг.

в) Штампы для изготовления плоских образцов в виде двусторонией лопатки (см. ГОСТ Р МЭК 811—1—1).

г) Эксикатор с силикателем или апалогичным материалом.

8.1.2. Отбор образцов

При совмещении испытаний (см. ГОСТ Р МЭК 811—1—2) на потерю массы с определением механических свойств (ГОСТ Р МЭК 811—1—1) из образцов, предназначенных для испытания на старение в термостате с циркуляцией воздуха в соответствии с ГОСТ Р МЭК 811—1—2 отбирают три образца, по одному от каждой изолированной жилы.

Допускается использование трех образцов из подготовленных от каждой жилы в соответствии с ГОСТ Р МЭК 811—1—1, если они не предназначены для других испытаний и если их толщина со-

ответствует указанной в п. 8.1.3в.

В других случаях три отрезка длиной около 100 мм отбирают от каждой изолированной жилы или от изоляции, снятой с каждой жилы, и из них подготавливают образцы в соответствии с п. 8.1.3.

8.1.3. Подготовка образцов

а). Удаляют наружные покрытия, если они имеются. Жилу удаляют, а электропроводящие слои, если они имеются на изолящии, удаляют механическим путем, без использования растворителя.

б) Испытание осуществляется на:

1) плоских образцах в виде двусторонней лопатки (см. рис. 1),

если возможно их изготовление;

 плоских образцах в виде двусторонней лопатки (см. рис. 2), если диаметр изолированной жилы слишком мал, чтобы изготовить

образцы в соответствии с рис. 1;

 на образцах в виде трубочек вместо образцов в виде двусторонней лопатки, при внутреннем диаметре изоляции не более 12,5 мм и отсутствии электропроводящего слоя на внутренней поверхности изоляции.

. Не допускается герметичная заделка концов образцов в виде

трубочек.

в) Образцы в виде двусторонней лопатки подготавливают в соответствии с ГОСТ Р МЭК 811—1—1; их поверхности должны быть параллельны по всей длине, толщина должна быть (1,0±0,2) мм; контрольные линии не наносят.

Образны в виде трубочек подготавливают в соответствии с ГОСТ Р МЭК 811—1—1 без нанесения контрольных линий. Общая площадь каждого образца (см. п. 8.1.4а) должна быть не менее 5 см².

- г) Гибкие влоские двухжильные шнуры, имеющие разделительное основание между жилами, испытывают без разделения жил:
 При расчете площади испарения плоского двухжильного шнура его рассматривают как два отдельных трубчатых элемента.
 - 8.1.4. Расчет площади испарения

До определения потери массы вычисляют площадь А, см², каждого образца по следующим формулам:

 а) для образцов в виде трубочек площадь является суммой площадей наружной и внутренней поверхностей и поверхности срезов

$$A = \frac{2\pi(D - \delta)/(l + \delta)}{100}.$$

- где 8— средияя толщина образца с точностью до двух знаков после запятой, если 8 ≪ 0,4 мм, и одного знака после запятой для больших толщин, мм;
 - D средний наружный диаметр образца с точностью до двух знаков после запятой, если $D \leqslant 2$ мм, и одного знака после запятой для больших диаметров, мм;
 - І длина образца с точностью до одного знака после запятой, мм.
- 8 и D измеряют в соответствии с FOCT P МЭК 811—1—1 на тонком пластинчатом срезе с конца каждого образца.

Формула применима также к образцам в виде трубочек, сечение которых представлено на рис. 3;

 б) для плоских образцов-в виде двусторонней лопатки в соответствии с рис. 2:

$$A = \frac{624 + (1188)}{100}$$
:

 в) для плоских образцов в виде двусторонней лопатки в соответствии с рис. 1

$$A = \frac{1256 + (1808)}{100},$$

В этих формулах & является средней толщиной образцов с точностью до двух знаков после запятой в соответствии с ГОСТ Р МЭК 811—1—1.

- 8.1.5. Проведение испытания
- подготовленные образцы помещают в эксикатор не менее чем на 20 ч при температуре окружающей среды. Сразу же после извлечения из эксикатора каждый образец взвешивают с точностью до 0,1 мг.

- б) Затем три образца выдерживают в термостате в нагретом воздухе (см. п. 8.1.1) при атмосферном давлении в течение 7 сут, при температуре (80±2) °C (если не указано иное) при соблюдении следующих условий:
- композиции явно различных составов не должны непытываться одновременно в одном и том же термостате;

 образцы должны быть подвешены вертикально в середине термостата на расстоянии не менее 20 мм один от другого;

 — образцы должны занимать не более 0.5 % объема термостата.

в) После указанной выдержки образцы снова гомещают в эксикатор на 20 ч при температуре окружающей среды. Затем их повторно взвешивают с точностью до 0,1 мг.

Для каждого образца вычисляют разность между массами, определенными в пл. а) и в), которую округляют до 1 мг.

8.1.6. Обработка результатов

Потерю массы каждого образца определяют делением его разности в массе (см. п. 8.1.56) в миллиграммах на его площадь (см. п. 8.1.4) в квадратных сантиметрах.

Медианное значение, полученное по трем образцам, взятым от каждой изолированной жилы, выраженное в миллиграммах на квадратный сантиметр, принимают за значение потери массы изолированной жилы.

- 8.2. Определение потери массы для оболочек
- 8.2.1. Испытательное оборудование

См. п. 8.1.1.

8.2.2. Отбор образцов

От оболочки отбирают три образца в соответствии с требованиями п. 8.1.2.

8.2.3. Подготовка образцов

Удаляют все конструктивные элементы, расположенные под оболочкой (а если имеются, то и поверх нее), не повреждая при этом оболочку, образцы подготавливают в соответствии с п. 8.1.3.

8.2.4. Расчет площади испарения

Используют формулы, приведенные в п. 8.1.4, со следующими изменениями: формулу, приведенную для образцов в виде трубочек, применяют лишь для форм сечений, представленных на рис. 4 и 5. Внутренняя и внешняя поверхности испарения оболочек плоских шнуров, проводов и кабелей рассчитывают на основе размеров поперечного сечения оболочки. Эти размеры измеряют в миллиметрах с точностью до двух знаков после запятой.

Внутреннюю поверхность плоских оболочек, имеющую треу-гольный выступ, можно рассматривать как плоскую.

8.2.5. Проведение испытания В соответствин с п. 8.1.5. 8.2.6. Обработка результатов В соответствии с п. 8.1.6.

испытание изоляции и оболочек на термическую стабильность

9.1. Испытательное оборудование

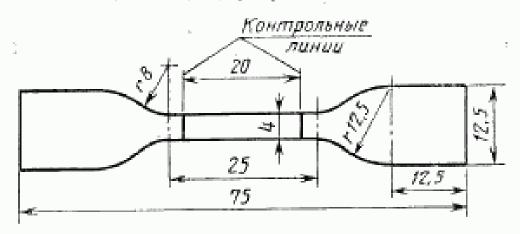
 а) Стеклянные трубки, закрытые с одного конца (например, запаянные), длиной 110 мм, наружным диаметром около 5 мм, внутренним диаметром (4,0±0,5) мм.

б) Универсальная индикаторная бумага, рН 1—10.

в) Термостат с автоматическим поддержанием температуры, указанной в НТД на кабельные изделия конкретного вида, или при отсутствии указания — (200±0,5) °C.

Термометр с ценой деления 0.1 °С.

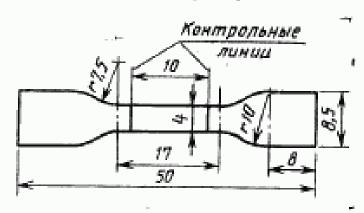
д) Хронометр или другой прибор для фиксации времени.


9.2. Проведение испытания

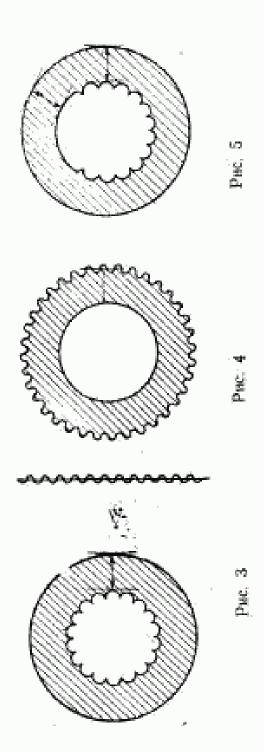
- а) От изоляции или оболочки каждой испытываемой жилы отбирают три образца, каждый массой (50±5) мг, по возможности в виде полоски. При малой толщине образец может состоять из двух или нескольких полосок. Каждый образец помещают в трубку по п. 9:1а. Образец должен быть расположен на дне трубки, занимая не более 30 мм по высоте.
- б) Полоску сухой универсальной индикаторной бумаги (см. п. 9.16) длиной около 15 мм и шириной около 3 мм размещают в верхней открытой части стеклянной трубки так, чтобы около 5 мм полоски выступало над краем трубки; выступающую часть загибают, чтобы полоска удерживалась на месте.
- в) Стеклянную трубку помещают в термостат (см. п. 9.1в), нагретын до требуемой температуры. Трубку вставляют в термостат на глубину 60 мм.
- г) Измеряют время, в течение которого универсальная индикаторная бумага наменяет цвет от рН 5 до рН 3, или продолжают испытание в течение установленного времени, если за этот период не происходит изменение цвета. За точку изменения цвета принимают момент, когда индикаторная бумага начинает приобретать красный цвет, что соответствует рН 3. К концу испытания индикаторную бумагу заменяют каждые 5—10 мин (особенно при длительных испытаниях) для того, чтобы более точно установить момент изменения цвета.

9.3. Оценка результатов

Среднее значение времени термической стабильности трех образцов не должно быть менее значения, установленного в НТД на кабельное изделие конкретного вида.


Образец в виде двусторонней лолатки

Размеры в миллиметрах


Pac. 1

Образец в виде двусторонней лопатки уменьшенного размера

Размеры в миллиметрах

Pac. 2

информационные данные

- 1. ПОДГОТОВЛЕН И ВНЕСЕН ТК 46 «Кабельные изделия»
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 01.03.94 № 39

Настоящий стандарт содержит полный аутентичный текст международного стандарта МЭК 811—3—2—85 «Общие методы испытаний для изоляционных и защитных материалов электрических кабелей. Часть 3. Методы, относящиеся к ПВХ компаундам. Р2. Испытание на теплостойкость».

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД; из котерый дама ссызка	Обозначение гоотнетствую- щего международного сбандарта	Номер шуякта
FOCT P M9K 8[1-1-1-94		8.1.1.—8.1.4
FOCT P M9K 811-1-2-94	МЭК 811—1—2	8.1.2

Изменение № 1 ГОСТ Р МЭК 811—3—2—94 Специальные методы испытаний поливинилхлоридных компаундов изоляции и оболочек электрических кабелей. Определение потери массы. Испытание на термическую стабильность

Принято и введено в действие Постановлением Госстандарта России от 09.01.2002 № 9-ст

Дата введения 2002—07—01

Заменить обозначение стандарта: ГОСТ Р МЭК 811—3—2—94 на ГОСТ Р МЭК 60811—3—2—94.

По всему тексту стандарта заменить ссылку: ГОСТ Р МЭК 811—1—1 на ГОСТ Р МЭК 60811—1—1.

Пункт 8.1.3. Перечисление б), 3). Первый абзац дополнить словами: «а также при условии удаления сепаратора (если он имеется) любым способом, но без использования растворителя».

Пункт 8.1.4. Перечисление а). Формулу изложить в новой редакции:

$$A = \frac{2\pi(D{-}\delta)(l{+}\delta)}{100} \; .$$

Пункт 9.1. Перечисление а) дополнить абзацами:

«Следует использовать трубки из стекла, стойкого к агрессивным средам и соответствующего следующим требованиям:

- гидролитическая стойкость класс 3 по [1];
- стойкость к кислотам класс 1 по [2];
- стойкость к щелочам класс 2 по [3]»;

перечисление в) дополнить абзацем:

«Для типовых испытаний и в случае разногласий используют масляную ванну»;

перечисление г) изложить в новой редакции:

«г) Калиброванный термометр с ценой деления 0,1 °C.

В зависимости от типа термометра, способа его калибровки и использования может потребоваться коррекция ртутного столба».

Пункт 9.2 дополнить примечанием (после наименования):

«Примечание — Для получения достоверных результатов испытания и уменьшения их разброса необходимо применение термометра требуемой точности, соответствующего установленной температуре испытания»:

перечисление а) изложить в новой редакции:

«а) От изоляции или оболочки каждой испытываемой жилы отбирают три образца, массой (50±5) мг каждый. Образец должен состоять из двух или трех небольших полосок длиной 20—30 мм. Каждый образец помещают в стеклянную трубку по 9.1, а). Образец должен быть расположен на дне трубки, занимая не более 30 мм по высоте».

Стандарт дополнить приложением — А:

«ПРИЛОЖЕНИЕ А (информационное)

Библиография

- [1] ИСО 719:1985* Стекло. Гидролитическая стойкость стеклянных гранул при 98 °С. Метод испытания и классификация
- [2] ИСО 1776:1985* Стекло. Стойкость к воздействию соляной кислоты при 100 °С. Метод пламенной эмиссионной или пламенной атомно-абсорбционной спектрометрии
- [3] ИСО 695:1991* Стекло. Стойкость к воздействию кипящего водного раствора смеси щелочей. Метод испытания и классификация.

Информационные данные. Пункт 2. Второй абзац изложить в новой редакции:

«Настоящий стандарт представляет собой полный аутентичный текст международного стандарта МЭК 60811—3—2—85 «Общие методы испытаний материалов изоляции и оболочек электрических кабелей. Часть 3. Специальные методы испытаний поливинилхлоридных компаундов. Раздел 2. Определение потери массы. Испытание на термическую стабильность» с Изменением № 1 (1993)»;

пункт 4. Таблица. Заменить ссылки: ГОСТ Р МЭК 811—1—1—94 на ГОСТ Р МЭК 60811—1—1—98, МЭК 811—1—1 на МЭК 60811—1—1.

(ИУС № 4 2002 г.)

^{*} Стандарты хранятся во ВНИИКИ».

Редактор Р. Г. Говердовская Технический редактор В. Н. Прусакова Корректор С. И. Гришунина

Славо в вибор 25.03.94. Подв. в печ. 16.05.94. Усл. печ. л. 0,70. Усл. кр. отт. 0,70. Уч. над. л. 0,53, Тир. 274 экс. С 1326.

Ордена «Знак Почета» Издательство стандартов, 100076; Москва, Колоденный пер., 14 Калумская эннография стандартов, ул. Московская; 256. Зак. 716

