ТОПЛИВО ТВЕРДОЕ МИНЕРАЛЬНОЕ

Определение истирающей способности (абразивности)

Издание официальное

53 3-2001/29

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
М и и с к

Предисловие

 РАЗРАБОТАН ТК 179 «Твердое минеральное топливо», Всероссийским теплотехническим научно-исследовательским институтом (ВТИ)

ВНЕСЕН Госстандартом Российской Федерации

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 22 от 6 ноября 2002 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Республика Казахстан Кыргызская Республика Республика Молдова Российская Федерация Таджикистан Туркменистай	Азгосстандарт Армгосстандарт Госстандарт Республики Беларусь Госстандарт Республики Казахстан Кыргызстандарт Молдовастандарт Госстандарт России Таджикстандарт Главгосслужба «Туркменстандартлары»

- 3 Настоящий стандарт представляет собой полный аутентичный текст ИСО 12900—97 «Уголь каменный. Определение истирающей способности» и содержит дополнительные требования, отражающие потребности экономики страны, выделенные курсивом.
- 4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 3 июня 2003 г. № 179-ст межгосударственный стандарт ГОСТ 30827—2002 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2004 г.
 - 5 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 2003

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1	Ооласть применения
2	Нормативные ссылки.
3	Сущность метода
4	Аппаратура, материалы, реактивы
5	Отбор и подготовка проб
6	Подготовка к испытанию,
7	Проведение испытания
8	Обработка результатов
9	Точность результатов измерений
0	Оформление результатов испытания

Введение

Угли разных марок и типов обладают различной абразивной способностью, что приводит к износу деталей и узлов конвейерного, дробильного и складирующего оборудования.

В целях классификации абразивной способности углей были стандартизованы следующие параметры оборудования:

- размеры и допуски испытательного оборудования;
- частота вращения изнашивающихся деталей и узлов;
- характеристики свойств изнашивающихся деталей и узлов;
- масса испытуемой партии;
- наибольший размер кусков топлива и испытуемой партии;
- продолжительность испытания.

Абразивная способность угля зависит от физических свойств угля (влажности, массовой доли и характеристик минеральных веществ) и механики операций, которым подвергается уголь.

Значения влагосодержания в испытуемой воздушно-сухой пробе, превышающие 10 %, могут дать аномальные результаты; причина этого до сих пор не установлена.

Абразивная способность угля дает возможность получить исходные эмпирические оценки удельной интенсивности изнашивания определенных типов промышленных шаровых барабанных мельниц, вертикально-шпиндельных мельниц и высокооборотных молотковых мельниц.

ТОПЛИВО ТВЕРДОЕ МИНЕРАЛЬНОЕ

Определение истирающей способности (абразивности)

Solid mineral fuel. Determination of abrasiveness

Дата ввеления 2004—01—01

1 Область применения

Настоящий стандарт устанавливает метод определения истирающей способности каменных и бурых углей, антрацитов, лигнитов, горючих сланцев (далее — твердого топлива) на лабораторной мельнице.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 380-94 Сталь углеродистая обыкновенного качества. Марки

ГОСТ 2603-79 Ацетон. Технические условия

ГОСТ 2715—75 Сетки металлические проволочные. Типы, основные параметры и размеры

ГОСТ 2999—75 Металлы и сплавы. Метод измерения твердости по Виккерсу

ГОСТ 10742—71 Угли бурые, каменные, антрацит, горючие сланцы и угольные брикеты. Методы отбора и подготовки проб для лабораторных испытаний

ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия.

ГОСТ 24104—2001 Весы лабораторные. Общие технические требования

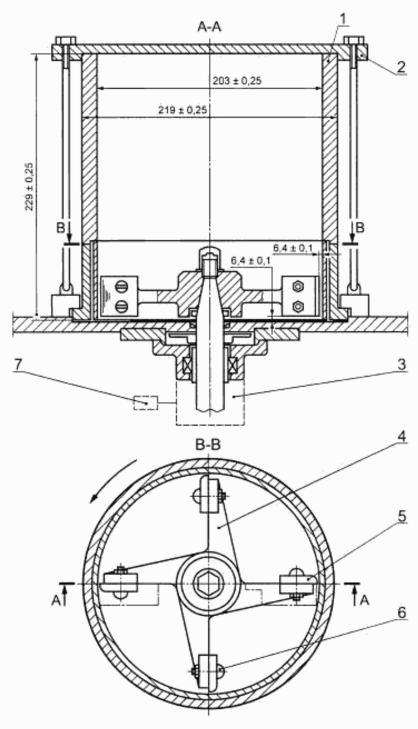
ГОСТ 27314—91 (ИСО 589--81) Топливо твердое минеральное. Методы определения влаги

ГОСТ 28498—90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

3 Сущность метода

Определение массового износа четырех стальных ножей, вращающихся при определенных условиях в горизонтальной плоскости лабораторной мельницы в твердом топливе массой 2 кг.

4 Аппаратура, материалы, реактивы


- 4.1 Лабораторная мельница (рисунок 1), включающая в себя следующие составные части:
- стальной цилиндрический корпус I внутренним диаметром (203 \pm 0,25) мм и высотой (229 \pm 0,25) мм;
- съемную герметичную крышку 2, плотно закрывающую корпус мельницы, предотвращающей пыление во время выполнения измерений;
- электродвигатель 3 мощностью 2,2 кВт, частотой вращения (23.8 ± 0.5) с $^{-1}$, приводящий во вращение ротор 4, представляющий четырехилечую поворотную крестовину, на плечах которой закреплены четыре стальных ножа 5; диаметр ротора по наружным краям стальных ножей равен (190 ± 0.25) мм;
- регулировочные болты 6, позволяющие регулировать зазор между кромкой ножей и стенкой корпуса;

Издание официальное

1

реле времени 7 с периодом действия (8,4 ± 0,04) мин.
 Мельница, изготовляется по чертежам СКБ ВТИ.

I — стальной цидиндрический корпус; 2 — съемная крышка; 3 — электродвигатель; 4 — ротор; 5 — стальные ножи; 6 — регулирующий болт

Рисунок 1 — Лабораторная мельница

4.1.1 Hown

4.1.1.1 Комплект из четырех эталонных ножей (рисунок 2) размером ($38 \times 38 \times 11$) \pm 0,1 мм, изготовленных механической обработкой из сортового проката из углеродистой стали марки Cm3 по FOCT 380. Ножи отжигают, сведя к минимуму поверхностную деформацию и нагрев, и определяют их твердость по Виккерсу по FOCT 2999. Для испытания отбирают ножи твердостью (160 ± 15) Н. Ножи должны быть пронумерованы.

Примечания

- Комплект ножей, используемых впервые, необходимо приработать; для этого проводят не менее двух определений до получения постоянных результатов в пределах допускаемых расхождений (9.1).
- 2 Ножи хранят в эксикаторе обернутыми в ткань, пропитанную антикоррозионным составом, предотвращающим образование ржавчины. Непосредственно перед использованием ножи следует очистить соответствующим растворителем (4.1.4, 4.1.5) и высущить в сущильном шкафу.
- 3 Эталонный комплект ножей необходимо отбраковывать при износе по передней или верхней кромке более 3 мм или если ножи невозможно правильно установить и отрегулировать в оправке или по щаблону.

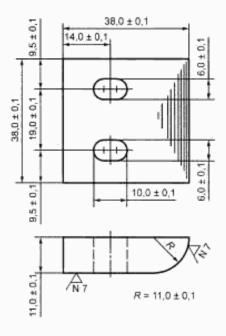
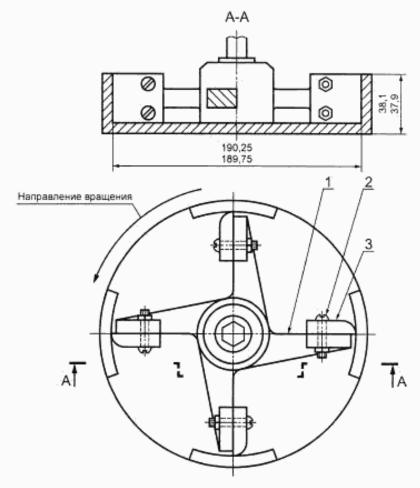


Рисунок 2 — Стальной нож


- 4.1.1.2 Комплект из четырех рабочих ножей, соответствующих требованиям 4.1.1.1 и подвергаемых последовательному контролю сопоставлением их с эталонными ножами, когда суммарная масса рабочих ножей уменьшается на 2 % + 4 % от первоначальной. Рабочий комплект ножей необходимо отбраковывать, если результаты, полученные по пробе с использованием рабочего комплекта после не менее трех циклов определения индекса абразивности, отличаются от значения, полученного с использованием эталонного комплекта, на значение, превышающее предел повторяемости (9.1).
- 4.1.2 Стальной цилиндрический корпус внизу в стенке может быть с выемками для размещения сменной гильзы. В качестве материала для корпуса (или гильзы, если таковая устанавливается) рекомендуется толстолистовая закаленная сталь Стал или твердосплавный толстый лист.

Цилиндрический корпус должен быть отбракован (либо должна быть установлена новая гильза) в случае превышения допуска, указанного на рисунке 1.

4.1.3 Поворотная крестовина, имеющая четыре плеча со сквозными отверстиями под болты для крепления и установки ножей с использованием болтов с полукруглой головкой, гаек и пружинных шайб. Необходимо предусмотреть возможность извлечения поворотной крестовины из стального цилиндра (рисунок 1). При несъемной поворотной крестовине ножи устанавливают с использованием шаблона, чтобы задние и нижние кромки ножей располагались на расстоянии (6,4 ± 0,1) мм от стенки и дна стального цилиндра.

- 4.1.4 Приводом, служащим для приведения поворотной крестовины в движение частотой вращения (23.8 ± 0.5) с⁻¹, является электродвигатель мощностью 2.2 кВт. Для вала предусмотрен счетчик оборотов и автоматический выключатель.
- 4.1.5 Оправка металлическая (рисунок 3) для облегчения крепления и регулировки ножей на плечах съемной поворотной крестовины. Размеры оправки должны быть подобраны так, чтобы при креплении ножей на плечах поворотной крестовины они касались стенок и днища оправки, что гарантирует правильные зазоры при замене поворотной крестовины в стальном цилиндре. Зазор (от 6,3 до 6,5 мм) между ножами и стальным цилиндром необходимо периодически контролировать, используя для этого предельный калибр.

1 — плечо поворотной крестовины;
 2 — крепежный болт;
 3 — ножи с закругленными кромками

Рисунок 3 — Оправка и расположение ножей

- 4.2 Весы лабораторные с наибольшим пределом взвешивания до 20 кг и погрешностью взвешивания не более 1,5 г по ГОСТ 24104.
- 4.3 Весы лабораторные с наибольшим пределом взвешивания до 200 г и погрешностью взвешивания не более 0,2 мг по ГОСТ 24104.
- 4.4 Шкаф сушильный электрический с терморегулятором, обеспечивающим устойчивую и равномерную по объему температуру нагрева до 200 °C, с отверстиями для естественной вентиляции.
 - 4.5 Термометр с пределами измерения от 0 до 150 °С и ценой деления шкалы 1° по ГОСТ 28498.
 - Тахометр стробоскопический.
- 4.7 Шаблон для измерения зазора между ребрами стальных ножей, внутренней стенкой и дном мельницы. Шаблон изготовляют и подгоняют для каждой мельницы индивидуально.

- 4.8 Секундомер.
- 4.9 Противень для подсушки топлива из неокисляющегося металла.
- 4.10 Совки для перемешивания и отбора пробы.
- 4.11 Щетки из тонкой латунной проволоки для чистки оборудования.
- 4.12 Сито со стальным полотном с круглыми пробивными отверстиями 70 и 100 или с проволочной металлической сеткой с размером ячеек 7 и 10 мм по ГОСТ 2715.
- 4.13 Дробилка щековая лабораторная с ручным или электрическим управлением для измельчения частиц угля до размера 10 и 7 мм при минимальной выработке угольной мелочи.
 - 4.14 Ацетон, ч. или ч. д. а., по ГОСТ 2603.
 - 4.15 Спирт этиловый ректификованный технический по ГОСТ 18300.

Допускается применять другие средства измерения с метрологическими характеристиками и лабораторное оборудование с техническими характеристиками не хуже, а также реактивы по качеству не ниже указанных в настоящем документе.

5 Отбор и подготовка проб

5.1 Отбор проб — по ГОСТ 10742 от недробленого или прошедшего дробление в дробилках топлива.

Наибольший размер кусков топлива в пробе не должен превышать 10 мм. Куски крупнее 10 мм дробят.

Массу пробы сокращают квартованием до 10 кг.

- 5.2 Исходную пробу топлива массой не менее 10 кг сушат в сушильном шкафу при (30 ± 3) °C до постоянной массы или на воздухе 24 ч, выдерживают в тонком слое для достижения приблизительного равновесия между влагой пробы и влажностью лабораторного помещения.
- 5.3 Воздушно-сухую пробу топлива измельчают и просеивают до полного прохода всего топлива через сито размером отверстий 7 мм, выдерживают в тонком слое минимально необходимое время для достижения приблизительного равновесия между влагой пробы и влажностью атмосферы в лаборатории. Воздушно-сухую пробу тщательно перемешивают. Массовая доля мелочи размером частиц менее 1 мм не должна превышать 30 %.

6 Подготовка к испытанию

- 6.1 Подготовленную исходную пробу топлива тщательно перемешивают и методом квартования из общей исходной пробы 10 кг выделяют лабораторные пробы массой (2,0 ± 0,1) кг.
- 6.2 Полученные лабораторные пробы топлива вновь доводят до воздушно-сухого состояния и хранят в герметически закрытых стеклянных или пластмассовых сосудах. Оставшееся топливо хранят для повторных испытаний.
- 6.3 Перед началом испытания внутреннюю поверхность корпуса мельницы (цилиндр, крышка, плечи поворотной крестовины) тщательно очищают от остатков топлива предыдущего испытания.
- 6.4 Рабочую поверхность стальных ножей подвергают легкому полированию мелкозернистой наждачной бумагой с целью удаления окисной пленки и шероховатости, очистке растворителем и высушиванию в сущильном шкафу. Износ образцов допускает уменьшение их суммарной массы от первоначальной не более чем на 4 %. Разность масс между образцами допускается не более 1 г.
- 6.5 Устанавливают с помощью тахометра частоту вращения двигателя $(23,8\pm0,5)$ с⁻¹. Ротор мельницы за время испытания должен совершить $(200\pm0,33)$ с⁻¹ оборотов с учетом движения двигателя по инерции.

7 Проведение испытания

7.1 Пронумерованные стальные ножи протирают сухой мягкой тканью, взвешивают с погрешностью не более 0,2 мг (4.3), устанавливают на плечи поворотной крестовины с помощью регулировочных болтов с полукруглой головкой, гаек и пружинных шайб и жестко закрепляют, предварительно отрегулировав каждый стальной нож при помощи шаблона при несъемной поворотной крестовине так, чтобы зазор между стенкой, дном мельницы и стальными ножами был (6,4 ± 0,1) мм. При съемной поворотной крестовине ее помещают в оправку (рисунок 3). Закрепляют ножи на поворотной крестовине, используя для этой цели болты с полукруглой головкой, гайки и пружинные шайбы.

Ножи должны едва касаться стенок и дниша оправки. Плотно затягивают гайки и проверяют установку.

Помещают поворотную крестовину с ножами в мельницу. Рабочая грань стального ножа, имеющая закругленную форму, соответствующую естественному износу металла, по направлению движения должна быть обращена к встречному потоку воздушно-сухого тоглива.

- 7.2 Загружают в мельницу навеску топлива массой (2,0 ± 0,1) кг, распределяя равномерным слоем на стальные ножи. Одновременно из общей исходной пробы берут навеску для определения общей влаги по ГОСТ 27314.
- 7.3 Закрывают мельницу крышкой и прочно ее закрепляют. Устанавливают счетчик частоты вращения на нуль. Запускают двигатель, поддерживая его на частоте вращения (23.8 ± 0.5) с⁻¹, пока он не совершит (200 ± 0.33) оборотов. Необходимо учесть движение двигателя по инерции.
- 7.4 После (200 ± 0,33) оборотов, совершенных ротором, реле времени выключает двигатель мельницы.
- 7.5 После полной остановки двигателя снимают крышку, удаляют из мельницы топливо (можно мощным пылесосом) и проверяют положение (зазор) стальных ножей по отношению к стенкам и дну мельницы с помощью шаблона.

При съемной поворотной крестовине помещают ее с ножами в оправку. Если ножи имеют возможность перемещаться, повторяют процедуру испытания с новой пробой топлива.

7.6 Если зазор не изменился, дают остыть ножам, снимают их, очищают мягкой проволочной щеткой, тщательно протирают мягкой тканью, промывают ацетоном или спиртом и сушат при комнатной температуре или в сушильном шкафу при температуре (25 \pm 3) °C в течение 20—30 мин, а затем взвешивают каждый нож с погрешностью не более $0.2 \, \text{мг}$ (4.3).

Если зазор изменился, определение повторяют. Если потеря массы одного ножа обнаруживает неоднократное относительное отклонение более 20 % от средней потери массы по всем ножам, испытание повторяют.

Для определения истирающей способности проводят два определения (7.1—7.6).

8 Обработка результатов

8.1 Суммарный массовый износ четырех стальных ножей от воздействия частиц топлива Δ_{m} , г, вычисляют по изменению массы четырех стальных ножей по формуле

$$\Delta_{m} = m_1 - m_2,$$
 (1)

где m₁ — масса четырех стальных ножей до испытания, г;

т. — масса четырех стальных ножей после испытания, г.

8.2 Истирающую способность А, мг, выраженную потерей массы металла на килограмм топлива, вычисляют по формуле

$$A = \frac{\Delta_{\text{in}}}{m_3} \cdot 10^3, \qquad (2)$$

где m₁ — масса навески топлива, кг.

8.3 За результат испытания принимают среднеарифметическое результатов двух определений, удовлетворяющих требованиям 9.1.

Если расхождение между результатами двух определений превышает значения, приведенные в разделе 9, проводят третье определение.

- За окончательный результат принимают среднеарифметическое результатов двух наиболее близких результатов в пределах допускаемых расхождений.
- 8.4 Результаты определения истирающей способности вычисляют до первого десятичного знака и округляют до целого числа.

9 Точность результатов измерений

9.1 Расхождение между результатами двух определений, выполненных в одной и той же лаборатории, одним лаборантом, на одной и той же аппаратуре на представительных навесках, взятых из одной и той же пробы, признаются достоверными (с доверительной вероятностью P = 0.95), если расхождение между ними не превыщает значения, указанного в таблице I.

6

Таблица 1

Истирающая способность, мг/кг	Повторяемость	Воспроизводимость
До 20 включительно	2 единицы измерения	См. 9.2
Св. 20	10 % среднего значения	См. 9.2

9.2 Для определений, проведенных различными лабораториями, нельзя указать точную воспроизводимость, так как для этого нет достаточных оснований.

10 Оформление результатов испытания

Протокол испытания должен включать следующие данные:

- а) наименование и адрес заказчика;
- б) наименование и характеристику испытываемого продукта;
- в) ссылку на используемый метод;
- г) результаты анализа и способ их выражения;
- д) особенности, замеченные при проведении анализа;
- е) операции, не включенные в настоящий стандарт или необязательные;
- ж) дату проведения испытания, фамилии и подписи руководителя лаборатории и лиц, проводивших испытание.

УДК 622.33:543.813:006.354

MKC 73.040

A19

ОКСТУ 0309

Ключевые слова: твердое топливо, уголь, абразивность, мельница, поворотная крестовина, металлическая оправка, проба, влажность

> Редактор Р.С. Федорова Технический редактор В.Н. Прусакова Корректор В.Н. Варенцова Компьютерная верстка Л.А. Круговой

Изп. лип. № 02354 от 14.07.2000. Сдано и набор 20.06.2003. Уч.-изп. л. 0,90. Тираж 200 экз. Подписано в печать 28.07.2003. С 11469. Зак. 640. Усл. печ. л. 1,40.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14:
http://www.standards.ru e-mail: info@standards.ru
Набрано в Издательстве на ПЭВМ
Филиал ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.
Плр № 080102

