ПРОДУКТЫ ПЕРЕРАБОТКИ ПЛОДОВ И ОВОЩЕЙ

Газохроматографический метод определения содержания сорбиновой кислоты

Издание официальное

B3 10-2000

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М и и с к

Предисловие

1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом консервной и овощесущильной промышленности (ВНИИКОП)

ВНЕСЕН Госстандартом Российской Федерации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 17—2000 от 22 июня 2000 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Грузия Республика Казахстан Кыргызская Республика Республика Молдова Российская Федерация Республика Таджикистан Туркменистан Республика Узбекистан Украина	Азгосстандарт Армгосстандарт Госстандарт Республики Беларусь Грузстандарт Госстандарт Республики Казахстан Кыргызстандарт Молдовастандарт Госстандарт России Таджикгосстандарт Главгосинспекция «Туркменстандартлары» Узгосстандарт Госстандарт

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 25 сентября 2000 г. № 231-ст межгосударственный стандарт ГОСТ 30670—2000 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2002 г.

4 ВВЕДЕН ВПЕРВЫЕ.

© ИПК Издательство стандартов, 2001

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

П

Содержание

I Область применения
2 Нормативные ссылки
3 Сущность метода
4 Средства измерений, вспомогательные устройства, реактивы и материалы
5 Отбор и подготовка проб
6 Порядок подготовки к выполнению измерений
7 Порядок выполнения измерений
8 Правила обработки результатов измерений
9 Допустимая погрешность контроля
10 Требования безопасности
Приложение А Библиография

2 - 19

ПРОДУКТЫ ПЕРЕРАБОТКИ ПЛОДОВ И ОВОЩЕЙ

Газохроматографический метод определения содержания сорбиновой кислоты

Products of fruits and vegetables processing.

Gas chromatographic method for determination of sorbic acid content

Дата введения 2002-01-01

1

1 Область применения

Настоящий стандарт распространяется на продукты переработки плодов и овощей и устанавливает газохроматографический метод определения содержания сорбиновой кислоты и ее солей. Стандарт не распространяется на продукты, изготовленные с добавлением жира:

2 Нормативные ссылки

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная: Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2603-79 Ацетон. Технические условия

ГОСТ 4166—76 Натрий сернокислый. Технические условия

ГОСТ 4174—77 Цинк сернокислый 7-водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4207—75 Калий железистосинеродистый 3-водный. Технические условия

ГОСТ 4233-77 Натрий хлористый. Технические условия

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 5556-81 Вата медицинская гигроскопическая. Технические условия

ГОСТ 6552—80 Кислота ортофосфорная. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 9147—80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 9293—74 Азот газообразный и жидкий. Технические условия

(MCO 2435-73)

ГОСТ 12026—76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 14919—83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20015—88 Хлороформ. Технические условия

ГОСТ 24104—88 Весы лабораторные общего назначения и образцовые. Общие технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 26313—84 Продукты переработки плодов и овощей. Правила приемки, методы отбора проб

ГОСТ 26671—85 Продукты переработки плодов и овощей, консервы мясные и мясорастительные. Подготовка проб для лабораторных анализов

Издание официальное

2*

ГОСТ 26703—93 Хроматографы аналитические газовые. Общие технические требования и методы испытаний

ГОСТ 28498—90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 29227—91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

3 Сущность метода

Метод основан на экстракции сорбиновой кислоты или ее соли хлороформом при предварительном подкислении пробы сока или напитка и определении массовой доли сорбиновой кислоты методом газожидкостной хроматографии с пламенно-ионизационным детектированием. При анализе густых продуктов (повидло, пюре, джем и др.) перед экстракцией проводят осаждение мешающих веществ растворами Карреза. Линейная зависимость хроматографического сигнала от массы введенной в хроматограф пробы сорбиновой кислоты — от 5 · 10 - 6 до 80 · 10 - 6 г (5—80 мкг). Диапазон измерения массовой доли сорбиновой кислоты — от 100 до 1000 млн - 1 (мг/кг).

4 Средства измерений, вспомогательные устройства, реактивы и материалы

Весы лабораторные общего назначения по ГОСТ 24104 наибольшим пределом взвешивания 20 г, 2-го класса точности.

Весы лабораторные общего назначения по ГОСТ 24104 наибольшим пределом взвешивания 500 г. 4-го класса точности.

Лабораторный газовый хроматограф по ГОСТ 26703, состоящий из:

термостата верхним пределом измерения рабочей температуры не ниже 250 °C;

испарителя верхним пределом измерения рабочей температуры не ниже 300 °C;

пламенно-ионизационного детектора нижним пределом детектирования от $1.0 \cdot 10^{-12}$ до $2.0 \cdot 10^{-12}$ г/с, допускаемым относительным средним квадратическим отклонением выходного сигнала хроматографа от 1.0 до 2.0 % от высоты или площади хроматографического пика, допускаемым отклонением выходного сигнала хроматографа за 48 ч измерений от ± 4.0 до ± 5.0 %;

регистрирующего устройства (самописца или интегратора), позволяющего проводить измерения при чувствительности 1 мВ с погрешностью записи в рабочих условиях не более 0,5 %;

стеклянной насадочной колонки длиной 200 см и внутренним диаметром 3 мм, заполненной хромосорбом W — AW или хроматоном N — AW размером частиц от 0,20 до 0,25 мм, на который нанесен 1 % ортофосфорной кислоты и 10 % диэтиленгликольсукцината от массы хромосорба.

Блок питания газовый [1] или аналогичные источники водорода и воздуха.

Шкаф сушильный [2], обеспечивающий поддержание заданного температурного режима от 40 до 150 °C с погрешностью ±5 °C.

Испаритель ротационный ИР 1М [3] или аналогичный.

Баня водяная [4].

Электроплитка по ГОСТ 14919.

Термометр жидкостный стеклянный по ГОСТ 28498 с допускаемой погрешностью ±2 °C в диапазоне измерения температуры от 0 до 100 °C.

Микрошприц МШ-10 номинальной вместимостью 0.01 см³ [5].

Чашка выпарительная по ГОСТ 9147 номинальной вместимостью 250 см3.

Насос водоструйный лабораторный по ГОСТ 25336.

Колбы мерные по ГОСТ 1770 исполнения 2, номинальной вместимостью 50, 100 и 250 см3.

Цилиндр по ГОСТ 1770 с взаимозаменяемым конусом, номинальной вместимостью 50 см³.

Пипетки по ГОСТ 29227 типа 3 исполнения 1 1-го класса точности, номинальной вместимостью 1, 10 и 50 см³.

Пробирки по ГОСТ 1770 с взаимозаменяемым конусом 14/23, номинальной вместимостью 10 см³.

Воронка делительная по ГОСТ 25336 с взаимозаменяемым конусом, номинальной вместимостью 250 см³.

Воронка дабораторная по ГОСТ 25336 типа В диаметром 56 мм и высотой 80 мм.

G D 5 T

Колба плоскодонная по ГОСТ 25336 исполнения 2, номинальной вместимостью 250 см³.

Колба грушевидная по ГОСТ 25336 с взаимозаменяемым конусом 14/23, номинальной вместимостью 100 см³.

Колба остродонная по ГОСТ 25336 с взаимозаменяемым конусом 14/23, номинальной вместимостью 25 см³.

Стаканы по ГОСТ 25336 номинальной вместимостью 50 и 100 см3.

Бумага индикаторная универсальная рН 1-10 [6].

Фильтры бумажные обеззоленные марки ФОМ по ГОСТ 12026.

Вата медицинская гигроскопическая по ГОСТ 5556.

Хлороформ технический по ГОСТ 20015.

Азот газообразный по ГОСТ 9293, ос. ч.

Кислота серная по ГОСТ 4204, ч.д.а., раствор массовой доли 25 %.

Натрий сернокислый безводный по ГОСТ 4166, х.ч.

Натрия гидроокись по ГОСТ 4328, ч.д.а., раствор массовой концентрации 40 г/дм³.

Натрий хлористый по ГОСТ 4233, ч.д.а., насыщенный раствор.

Калий железистосинеродистый 3-водный по ГОСТ 4207, ч.д.а., раствор массовой концентрации 150 г/дм³ (раствор Карреза 1).

Цинк сернокислый 7-водный по ГОСТ 4174, ч.д.а., раствор массовой концентрации 300 г/дм³ (раствор Карреза II).

Спирт этиловый по ГОСТ 18300.

Ацетон по ГОСТ 2603, ч.д.а.

Кислота сорбиновая [7].

Кислота каприловая [8], перегнанная, спиртовой раствор массовой концентрации 5 мг/см3.

Кислота ортофосфорная по ГОСТ 6552, ч.д.а., плотностью 1,698 г/см³.

Диэтиленгликольсукцинат (ДЭГС).

Хромосорб W — AW или хроматон N — AW размером частиц от 0,20 до 0,25 мм (60— 80 меш).

Вода дистиллированная по ГОСТ 6709.

Допускается использование других средств измерений, вспомогательных устройств, реактивов и материалов, не уступающих перечисленным выше по метрологическим и техническим характеристикам.

5 Отбор и подготовка проб

Отбор проб — по ГОСТ 26313, подготовка их к испытаниям — по ГОСТ 26671.

6 Порядок подготовки к выполнению измерений

6.1 Подготовка растворителей

Растворители квалификации «ч» или «технический» перед использованием перегоняют, строго отбирая фракцию, соответствующую основному веществу по температуре кипения.

6.2 Приготовление рабочего раствора сорбиновой кислоты

Рабочий раствор сорбиновой кислоты массовой концентрации 5 мг/см³ готовят весовым способом. В стаканчике номинальной вместимостью 50 см³ взвешивают на аналитических весах 0,250 г сорбиновой кислоты, количественно переносят в мерную колбу вместимостью 50 см³, смывая небольшими порциями этилового спирта. Объем содержимого в колбе доводят до метки этиловым спиртом.

Полученный раствор хранят при температуре не выше 5 °C в закрытом сосуде в течение 6 мес.

6.3 Приготовление рабочего раствора каприловой кислоты (внутреннего стандарта) по 6.2.

6.4 Подготовка хроматографа к работе

6.4.1 Приготовление насадки для хроматографической колонки

Неподвижную фазу, содержащую от массы носителя 1 % фосфорной кислоты и 10 % диэтиленгликольсукцината (ДЭГС) на твердом носителе хромосорб готовят в два этапа. Для этого берут навеску фосфорной кислоты массой 0,313 г и растворяют ее в 120 см³ этилового спирта. В круглодон-

ную колбу номинальной вместимостью 250 см³ высыпают 30,0 г хромосорба или хроматона и заливают приготовленным спиртовым раствором фосфорной кислоты, осторожно перемешивают. Затем растворитель отгоняют на ротационном испарителе до получения сыпучего состояния твердого носителя. Далее в колбу вносят приготовленный раствор 3,0 г ДЭГС в 120 см³ хлороформа, осторожно перемешивают и также отгоняют хлороформ на ротационном испарителе. Получениую насадку пересыпают в фарфоровую чашку и выдерживают в вытяжном шкафу до полного устранения запаха хлороформа. Приготовленную насадку пересыпают в стеклянный сосуд и хранят в укупоренном состоянии.

6.4.2 Приготовление хроматографической колонки

Хроматографическую стеклянную колонку длиной 200 см и внутренним диаметром 3 мм промывают последовательно этиловым спиртом, ацетоном и хлороформом и высушивают. Один конец спиральной стеклянной колонки закрывают тампоном из стекловаты и подключают к нему водоструйный насос. Через другой конец колонку заполняют приготовленной насадкой с помощью водоструйного насоса. Для равномерного уплотнения насадки колонку постукивают деревянной палочкой. После заполнения колонки второй конец ее также закрывают тампоном из стекловаты.

6.4.3 Подготовка хроматографа

Подготовку и установку колонки, подключение хроматографа к сети и вывод хроматографа на режим выполняют согласно инструкции по эксплуатации хроматографа.

6.4.4 Определение градуировочного коэффициента

В пробирках номинальной вместимостью 10 см³ готовят градуировочные растворы, состоящие из растворов сорбиновой и каприловой кислот (внутреннего стандарта), приготовленных по 6.2 и 6.3. Для этого пипетками отмеряют определенные объемы рабочих растворов этих кислот (таблица 1) и перемешивают их.

Т а б л и ц а 1 — Шкала градуировочных растворов при измерении градуировочных коэффициентов

Наименование показателя	Градунровочный раствор			
THE RESIDENCE OF THE PARTY OF T	ſ	2	.3	4
Объем рабочего раствора сорбиновой кислоты массовой концентрации 5 мг/см ³ , см ³	3	2	4	1
Объем рабочего раствора каприловой кислоты массовой концентрации 5 мг/см ³ , см ³	3	3	ı	4
Концентрация сорбиновой кислоты в получен- ном градуировочном растворе, мг/см ¹	2,5	2	4	1
Концентрация каприловой кислоты в получен- ном градуировочном растворе, мг/см ¹	2,5	3	ı	4:
Масса сорбиновой кислоты в 5 · 10 - 1 см ² (5 мкл) хроматографируемой пробы, мкг	12,5	10	. 20	5
Масса каприловой кислоты в 5 · 10-2 см2 (5 мкл) хроматографируемой пробы, мкг	12,5	15	5	20

Далее проводят газохроматографический анализ каждого полученного градуировочного раствора в соответствии со следующими условиями:

```
объем вводимой пробы в инжектор хроматографа от 2 · 10-3 до 5 · 10-3 см3;
```

рабочая шкала электрометра — 4-10-10 А;

температура термостата - 200 °C;

температура детектора - 250 °C;

температура испарителя - 250 °С;

скорость потока газа-носителя (азота) — 30 см³/мин;

скорость потока водорода — 30 см³/мин;

скорость потока воздуха - 300 см³/мин;

диапазон чувствительности самописца на полную шкалу — 1 мВ; скорость подачи диаграммной ленты — 10 мм/мин; время удерживания сорбиновой кислоты — около 4 мин; время удерживания каприловой кислоты — около 2 мин. Градуировочный коэффициент f рассчитывают по формуле

$$f = \frac{m_1 S_2}{m_2 S_1}, \tag{1}$$

где m. — масса сорбиновой кислоты, мкг;

– площадь пика каприловой кислоты, мм²;

т, — масса каприловой кислоты, мкг;

S₁ — площадь пика сорбиновой кислоты, мм².

7 Порядок выполнения измерений

Экстракция сорбиновой кислоты из густых продуктов (торе, джемов, повидла, томатной пасты и др.)

Навеску пробы массой 50,0 г, помещают в плоскодонную колбу. Продукт разбавляют дистиллированной водой объемом 10—20 см³. Полученную смесь подщелачивают раствором гидроокиси натрия до значения рН 9—10 по универсальной индикаторной бумаге. В колбу вносят 1—2 см³ рабочего раствора каприловой кислоты, приготовленного по 6,3, в зависимости от предполагаемого содержания консерванта. Смесь помещают на кипящую водяную баню на 30 мин, после чего ее охлаждают до комнатной температуры и количественно переносят в мерную колбу вместимостью 250 см³. В колбу последовательно добавляют по 10 см³ растворов Карреза I и Карреза II. Содержимое в колбе доводят до метки дистиллированной водой, тщательно перемешивают и выдерживают 30 мин, после чего фильтруют через бумажный складчатый фильтр. Для анализа отбирают 50 см³ фильтрата.

Фильтрат переносят в делительную воронку, подкисляют раствором серной кислоты до значения рН 2 по универсальной индикаторной бумаге. Раствор выдерживают от 5 до 10 мин, после чего вновь проверяют значение рН и при необходимости проводят дополнительное подкисление раствора. Экстракцию сорбиновой кислоты проводят хлороформом трижды порциями по 50 см³, перемешивая содержимое в делительной воронке 5 мин, каждый раз отбирая нижний хлороформный слой. Объединенный экстракт обезвоживают, фильтруя его через воронку, заполненную на треть ее высоты безводным сульфатом натрия. Экстракт упаривают на ротационном испарителе при температуре 45 °C до сухого остатка. Остаток в отгонной колбе растворяют в 1 см³ этилового спирта. Полученный раствор используют для хроматографического анализа.

7.2 Экстракция сорбиновой кислоты из соков и напитков

Навеску пробы массой 50,0 г, количественно переносят в делительную воронку. В воронку приливают от 0,5 до 1 см³ раствора каприловой кислоты, в зависимости от предполагаемого содержания консерванта, от 10 до 20 см³ насыщенного раствора хлорида натрия и от 1 до 2 см³ этилового спирта. Подкисляют до рН 2. Экстракцию проводят хлороформом трижды порциями по 50 см³, перемешивая содержимое в делительной воронке 5 мин, каждый раз отбирая нижний хлороформный слой. Объединенный экстракт обезвоживают, фильтруя его через воронку, заполненную на треть ее высоты безводным сульфатом натрия. Экстракт упаривают на ротационном испарителе при температуре 45 °C практически досуха. Остаток в отгонной колбе растворяют в 1 см³ этилового спирта. Полученный раствор используют для хроматографического анализа.

7.3 Хроматографический анализ

В инжектор хроматографа с помощью микрошприца вводят от $2 \cdot 10^{-3}$ до $5 \cdot 10^{-3}$ см³ полученного экстракта и проводят хроматографический анализ при условиях, указанных в 6.4.4. Если пики сорбиновой и каприловой кислот выходят за пределы шкалы регистрирующего устройства, хроматографический анализ повторяют, вводя в инжектор меньший объем экстракта.

8 Правила обработки результатов измерений

Массовую долю сорбиновой кислоты или соли Х, млн-1 (мг/кг), вычисляют по формуле

$$X = K \frac{cV S_1 f 1000}{m S_1},$$
 (2)

где c — концентрация каприловой кислоты, приготовленной по 6.3 мг/см³;

V — объем каприловой кислоты, введенный в анализируемую пробу, см³;

S. — площадь пика сорбиновой кислоты, мм²;

градуировочный коэффициент, определенный по 6.4.4;

т — масса навески пробы, г;

S₂ — площадь пика каприловой кислоты, мм²;

К — коэффициент, рассчитанный делением молярной массы соли на молярную массу кислоты: для сорбата калия K = 1,34, для сорбата натрия K = 1,20, для сорбиновой кислоты K = 1,0.

9 Допустимая погрешность контроля

Вычисления результатов определений проводят до первого десятичного знака. За окончательный результат измерений принимают среднее арифметическое значение результатов двух параллельных определений, округленное до целого значения.

Абсолютное расхождение между результатами двух параллельных определений, выполненных в одной лаборатории, не должно превышать значения показателя сходимости d(r), равного 15 млн⁻¹ (мг/кг), при содержании сорбиновой кислоты в продукте от 100 до 500 млн⁻¹ (мг/кг) включительно, 50 млн⁻¹ (мг/кг) — при содержании сорбиновой кислоты свыше 500 до 1000 млн⁻¹ (мг/кг) включительно в консервированных продуктах, при доверительной вероятности P = 0.95.

Абсолютное расхождение между результатами двух измерений, выполненных в двух лабораториях, не должно превышать значение показателя воспроизводимости D(R), равного 20 млн⁻¹ (мг/кг) при содержании сорбиновой кислоты от 100 до 500 млн⁻¹ (мг/кг) включительно, 65 млн⁻¹ (мг/кг) при содержании сорбиновой кислоты в консервированном продукте свыше 500 до 1000 млн⁻¹ (мг/кг) включительно при доверительной вероятности P = 0.95.

Абсолютная погрещность измерения при всех условиях, регламентируемых настоящим стандартом, не должна превышать 15 млн⁻¹ (мг/кг) при содержании сорбиновой кислоты от 100 до 500 млн⁻¹ (мг/кг) включительно, 45 млн⁻¹ (мг/кг) при содержании сорбиновой кислоты в консервированном продукте свыше 500 до 1000 млн⁻¹ (мг/кг) включительно при доверительной вероятности P = 0.95.

10 Требования безопасности

При проведении испытания следует соблюдать требования безопасности в соответствии с «Правилами» [9].

ПРИЛОЖЕНИЕ А (справочное)

Библиография

[1]	TY 4215-001-17244249-93	Блок питания газовый
[2]	ТУ 64-1-1411-76	Шкаф сушильный
[3]	TY 25-1173-84	Испаритель ротационный ИР-1-М
[4]	ТУ 462260375	Баня водяная дабораторная с электрическим или огневым подогревом
[5]	TY 25-03-2152-76	Микроштриц МШ-10
[6]	ТУ 6—09—1181—76	Бумага индикаторная универсальная
[7]	TY 6-14-358-76	Кислота сорбиновая (2, 4-гексадиеновая)
[8]	TV 6-09-529-75	Кислота каприловая
[9]		Правила устройства, техники безопасности, производственной санитарии,
		противоэпидемического режима и личной гигиены при работе в лабора-
		ториях санитарно-эпидемиологических учреждений системы Минздрава,
		утвержденные 20.01.81 № 4225-81

FOCT 30670-2000

УДК 664.841/.851.001.4:006.354

MKC 67.080.20

H59

ОКСТУ 9709

Ключевые слова: сорбиновая кислота, газовая хроматография, метод анализа

Редактор Т. П. Шашина Технический редактор О. Н. Власова Корректор Н. И. Гаврищук Компьютерная верстка З. И. Мартыновой

Изд. лиц. № 02354 от 14,07.2000. Сдано в набор 27.12.2000. Подписано в печать 18.01.2001. Усл. печ. л. 1,40. Уч.-изд. л. 0,90. Тираж. 550. экд. С/D 854 : Зак. 335

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Калужской типографии стандартов на ПЭВМ. Калужская типография стандартов, 248021, Калуга, ул. Московская, 256. ПЛР № 040138

