

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛАМПЫ ЭЛЕКТРОННЫЕ **МАЛОМОЩНЫЕ**

МЕТОД ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ БАЛЛОНА FOCT 19438.20-79

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

ЛАМПЫ ЭЛЕКТРОННЫЕ МАЛОМОЩНЫЕ Метод измерения температуры баллона

Low powered electronic tubes Method for measurement of the temperature of the build ΓΟCT 19438.20-79

> Взамен ГОСТ 13724—68

OKII 63 6200

Постановлением Государственного комитета СССР по стандартам от 30 марта 1979 г. № 1169 срок действия установлен

с 01.07 1980 г. до 01.07 1985 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на электронные усилительные, выпрямительные и генераторные лампы мощностью, продолжительно рассеиваемой анодом, до 25 Вт (далее — лампы) и устанавливает метод измерения температуры баллона в диапазоне от 50 до 350°C.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Установки, предназначенные для испытания ламп, а также общие правила испытаний должны соответствовать требованиям ГОСТ 8089—71 и настоящего стандарта.
- Измерения должны проводиться в условиях и режимах, установленных в стандартах или технических условиях на лампы конкретных типов.
- Измерения должны проводиться в нормальных климатических условиях по ГОСТ 16962—71.
- Испытательные установки должны подвергаться ведомственной поверке по ГОСТ 8.002—71.

Издание официальное

Перепечатка воспрещена

О Издательство стандартов, 1979

2. ADDAPATYPA

 Температуру баллона определяют с помощью термоэлектрического преобразователя и измерительного прибора — автоматического потенциометра или потенциометра постоянного тока;

2.2 Термоэлектрический преобразователь должен соответст-

вовать ГОСТ 6616-74 и изготовляться с помощью сварки.

Метод сварки электродов приведен в справочном приложении 1.

 Электроды термоэлектрического преобразователя должны быть диаметром не более 0,2 мм и изготовляться из сплавов хромель, копель, алюмель по ГОСТ 1790—77.

 Общее сопротивление цепи термоэлектрического преобразователя электродов и соединительных проводов не должно превы-

шать 100 Ом.

2.5. Термоэлектрический преобразователь крепится к баллону лампы с помощью приспособления, указанного в рекомендуемом

приложении 2.

- 2.6. Крепление термоэлектрического преобразователя должно осуществляться таким образом чтобы поверхности электродов по длине не менее 5 мм от точки сварки, непосредственно соприкасались с поверхностью баллона лампы.
- 2.7. Измерение термоэлектродвижущей силы (т. э. д. с) должно производиться с помощью автоматического потенциометра по ГОСТ 7164—78 класса точности не хуже 0,5 или потенциометра постоянного тока по ГОСТ 9245—68 класса точности не хуже 0,05.
- Для измерения температуры окружающей среды применяется ртутный термометр по ГОСТ 2823—73 с погрешностью в пределах ± 1°C.

3. ПОДГОТОВКА К ИЗМЕРЕНИЮ

- 3.1. Поверхность баллона лампы очищают от пыли.
- Закрепляют термоэлектрический преобразователь на лампе, в соответствии с пп. 2.5, 2.6.
- З.З. Устанавливают режим, указанный в стандартах или технических условиях на лампы конкретных типов.
- Злектроды термоэлектрического преобразователя присоединяют к автоматическому потенциометру или потенциометру постоянного тока.
- 3.5. При определении температуры баллона от 50 до 100°С температура свободных концов электродов термоэлектрического преобразователя должна быть равна 0°С, а свыше 100°С температуре окружающей среды.
- 3.6. Время соприкосновения термоэлектрического преобразователя с нагретой поверхностью баллона, необходимое для отсчета т. э. д. с. должно быть не менее 60 с.

4. ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ

4.1. При применении автоматического потенциометра температуру баллона лампы определяют непосредственно по показаниям прибора, шкала которого проградуирована в градусах Цельсия.

4.2. При применении потенциометра постоянного тока темпера-

туру баллона лампы определяют следующим образом.

Производят трехкратное измерение т. э. д. с в милливольтах рассчитывают ее среднее арифметическое значение. По полученному значению и по градунровочным кривым характеристикам термоэлектрических преобразователей по ГОСТ 3044—77 определяют температуру баллона.

Если температура электродов термоэлектрического преобразователя соответствует температуре окружающей среды то истинное значение э. д. с. в милливольтах рассчитывается по формуле

$$E = E_1 + E_0$$

где E_1 — показания потенциометра постоянного тока, мВ;

E₀ — т. э. д. с, мВ, соответствующая температуре окружающей

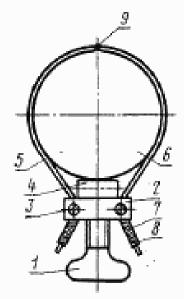
4.3. Относительная погрешность измерения температуры баллона должна быть в пределах $\pm 1,5\%$ с вероятностью 0,95.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1. Обслуживание измерительной установки должно быть возложено на специально подготовленный технический персонал и производиться в соответствии с «Правилами технической эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей», утвержденными Госэнергонадзором 12 апреля 1969 г.
- 5.2. Измерительная установка должна быть оборудована в соответствии с ГОСТ 12.2.007.0—75 и с «Правилами устройства электроустановок», утвержденными Госэнергонадзором СССР (изд. 4-е. 1977).
- 5.3. Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 22261—76.

МЕТОД СВАРКИ ЭЛЕКТРОДОВ

 Электроды, зачищенные по длине 10 мм, соединяют друг с другом и закрепляют лабораторным зажимом, соединенным с источником питания. Электроды зажимают таким образом, чтобы концы выступали из зажимного устройства на 0.5—1 мм


Концы обрезают вожницами или кусачками, чтобы дуга электросварки образовалась на обонх электродах одновременно. Другим зажимом закрепляют графитовый стержень по ГОСТ 8538—75, подключенный к другому полюсу источника питания.

Кратковременным касанием графита электродов добиваются электрического разряда, в результате чего на концах термоэлектродов образуется оплавленный шарик диаметром 0,2—0,4 мм.

- В качестве источников пятания для сварки могут быть использованы выпрямитель, обеспечивающий постоянный ток 10 А при напряжения 12 В, или кислотные (щелочные) аккумуляторные батарен с напряжением 12 В и емкостью 40—80 А с
- После сварки термоэлектроды разводят в противоположные от сварки стороны.

ПРИЛОЖЕНИЕ 2 Рекомендиемое

КОНСТРУКЦИЯ ПРИСПОСОБЛЕНИЯ ДЛЯ КРЕПЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ К БАЛЛОНУ ЛАМПЫ

I-винт; 2-планка; 3-установочный винт; <math>I-шайба; 5-териоэлектролы; S-изолация; I- чулок из стеклянного волокия; I-изолация; I- верхиоэлектролов.

1. Установочный винт на конце должен иметь сферическую поверхность.

 Чулок диаметром I—1,9 мм должен выдерживать температуру не менее 350°C; концы на участке 10 мм от установочного винта должны быть изолированы и изоляция закреплена.

 Усилне натяга Q термоэлектрического преобразователя при креплении. его к баллону дамны с помощью приспособления данной конструкции должно

составлять от 2,9 до 3,9 Н

4. Для получения значения Q к головке (рукоятке) винта должно быть приложено усилие вращения Р в ньютонах, определяемое по формуле

$$P = \frac{Q[R_{cp} \lg (\alpha + \rho) + 0.6\mu r]}{L}$$

где Q — усилие натяга, H;

 $R_{\rm cp}$ — средний раднус резьбы, мм; α — угол подъема резьбы ($(g_{\alpha} - \frac{i}{2\pi R_{\rm cp}});$

i — шаг резьбы, мм;

р — угол трения в резьбовом соединении (tg р == µ);

 μ — коэффициент трения на опорном торце винта ($\mu \approx 0.1$);

г — раднус опорного торца винта, мм;

Длина рукоятки или радиус головки винта, им.

Полученное расчетное значение P проверяют динамометром по ГОСТ 13837 - 68.

Группа Э29

Изменение № 1 ГОСТ 19438.20—79 Лампы электронные маломощные. Метод измерения температуры баллона.

Постановлением Государственного комитета СССР по стандартам от 25.12.61 № 5651 срок введения установлен

c 01.05.82

Пункт 1:1, Заменить ссылку: ГОСТ 8089—71 на ГОСТ 19438.0—80. Пункт 2.7. Заменить ссылку: ГОСТ 9245—68 на ГОСТ 9245—7).

Пункт 4.3 изложить в новой редакции:

*4.3. Относительная погрешность измерения температуры баллона термоэлектрическими преобразовителями с электродами из силнаов хромель-колель ие должив выходить за пределы $\pm 5\%$ и из силавов хромель-алюмель — $\pm 8\%$ с вероятностью 0.96».

Приложение 2. Пункт 5. Заменять ссылку: ГОСТ 13837--68 на ГОСТ

13837 - 79.

(MYC M 3 1982 r.)

Редактор Н. Б. Жуковская Технический редактор Л. Я. Митрофанова Корректор З. П. Абашева

Сдако в набор 03.04.79 Поап. в печ.08.06.79 0.5 п. д. 0.30 уч. - кад. д. Тир. 12000 Цена 3 коп.

Ордена «Знак Почета» Издательство стандартов. Москва. Д.557. Новопресненский вер., 3 Калужская тапография стандартов, ул. Московская, 256. Зак. 1034

